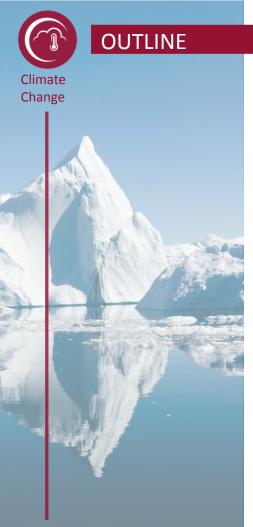


C3S SIS Energy

Overlook on the C3S SIS Energy service with a focus on seasonal forecast

Raphaël Legrand, Météo-France



Focus on seasonal forecast dataset

3 Historical and Climate projection dataset

Conclusions and perspectives

Copernicus Climate Change Service (C3S)

C3S Climate data

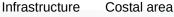
Intermediaries Provision of climate services

> Information needs **End-users**

The role of climate services:

- "Non linearity": Facilitate the access to huge amount of climate dataset (e.g. homogeneity and SI infra.)
- "Usability": Apply user's knowledge and expertise on climate data.
- "R&D": Enhance applied science and services

Agriculture Water Management


Energie

Health

Transport

Sectorial Information System (SIS): Energy

Energy

We support the energy sector, which is increasingly relying on renewable energy production, by providing climate-related information, such as forecasts of air-temperature, atmospheric transparency, wind strength, and projections of wave size and frequency.

Consortium

Alberto Troccoli (lead) Luke Sanger Janice Ogonji Lin Ho Clare Goodess

Laurent Dubus Yohan Moreau

Robert Vautard Flavio Pons S. Firion Guillaume Levavasseur Bianca Bartok

Raphaël Legrand Sophie Martinoni Lucas Grigis Christian Viel Ludovic Bouilloud

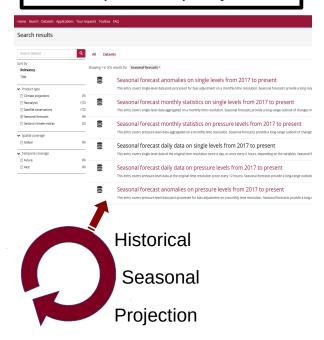
Caroline Acton

Met Office

Yves-Marie St Drenan Thierry Ranchin

C3S SIS ENERGY

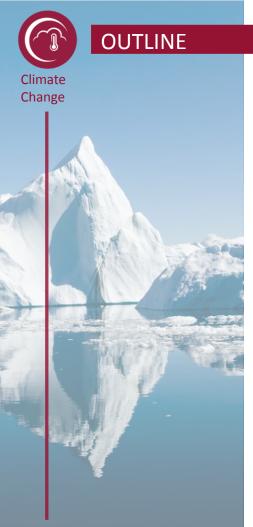
Whole dataset available on the Climate Data Store (CDS) https://cds.climate.copernicus.eu/



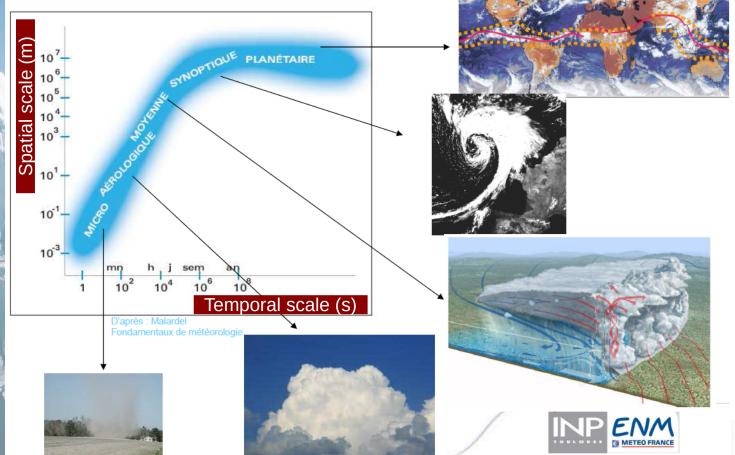
C3S-SIS-Energy: available dataset

	Variable	Timescale	Source	Highest	Highest	Spatial						
				Temporal	Spatial	Aggregation						
				Resolution	Resolution							
	Climate indicators											
Πέγκ	<u> </u>	Historical	ERA5	1 hour	0.25 deg	C&C						
粉	Temperature	Seasonal	EC, MF, MO	1 day	1.00 deg	Country						
C)	Projection	E-Cordex (BA)	3 hours	0.25 deg	C&C						
1		Historical	ERA5	1 hour	0.25 deg	C&C						
M (📥	Precipitation	Seasonal	EC, MF, MO	1 day	1.00 deg	Country						
		Projection	E-Cordex (BA)	1 day	0.25 deg	C&C						
Maria	Wind (10 m	Historical	ERA5	1 hour	0.25 deg	C&C						
		Seasonal	EC, MF, MO	6 hours	1.00 deg	Country						
1 _90	^ഉ and 100 m)	Projection	E-Cordex (BA)	3 hours	0.25 deg	C&C						
\triangleright	✓ Solar Radiation	Historical	ERA5 (BA)	1 hour	0.25 deg	C&C						
⊲(at surface	Seasonal	EC, MF, MO	1 day	1.00 deg	Country						
∇	at surface	Projection	E-Cordex (BA)	3 hours	0.25 deg	C&C						
(0)	Mean Sea	Historical	ERA5	1 hour	0.25 deg	Country						
No.	Level Pressure	Projection	Euro-Cordex	1 day	0.25 deg	Country						
Energy indicators												
	Electricity	Historical	B.o. ERA5	1 day	Country	Country						
	Demand	Seasonal	B.o. EC, MF, MO	1 day	Country	Country						
	Demand	Projection	B.o. E-Cordex	1 day	Country	Country						
1.	Wind Power	Historical	B.o. ERA5	1 hour	0.25 deg	C&C						
1 11	(onshore and	Seasonal	B.o. EC, MF, MO	6 hours	1.00 deg	Country						
	offshore)	Projection	B.o. E-Cordex	3 hours	0.25 deg	C&C						
	Solar Power	Historical	B.o. ERA5	1 hour	0.25 deg	C&C						
	(PV)	Seasonal	B.o. EC, MF, MO	1 day	1.00 deg	Country						
	(FV)	Projection	B.o. E-Cordex	3 hours	0.25 deg	C&C						
1/Z	Hydro Power	Historical	B.o. ERA5	1 day	Country	Country						
V	(Run-of-River	Seasonal	B.o. EC, MF, MO	1 day	Country	Country						
ئىدا	and Reservoir)	Projection	B.o. E-Cordex	1 day	Country	Country						

Data available online: https://cds.climate.copernicus.eu/ open data policy

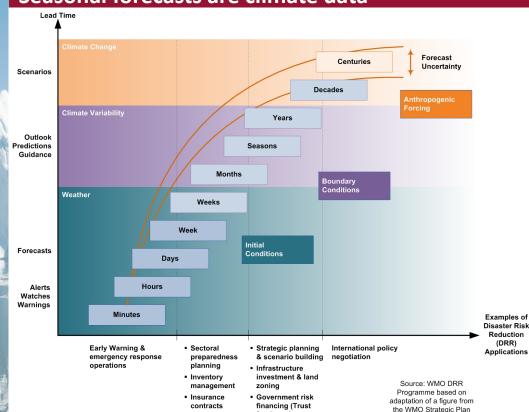


Python code will also be an open source


Pocus on seasonal forecast dataset

- Historical and Climate projection dataset
- Conclusions and perspectives

Climate Change


Seasonal forecasts are climate data

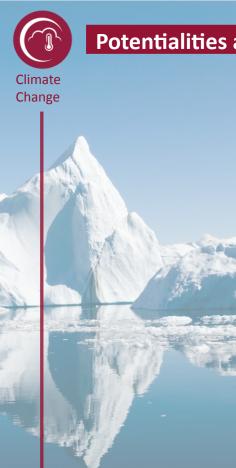
Seasonal forecasts are climate data

funds early

warning systems etc)

Some important specificities of Long Range Forecast :

- forecasting of Climate Variability, not weather
- → time-integration/statistics of climate variables, probability of scenarios
- predictability comes from the slow components of the Climate System (oceans, ground, sea ice...) through boundary conditions
- → concept of "forcing"


From http://www.wmo.int/pages/prog/drr/

(2012 - 2015)

Potentialities and limits in Europe

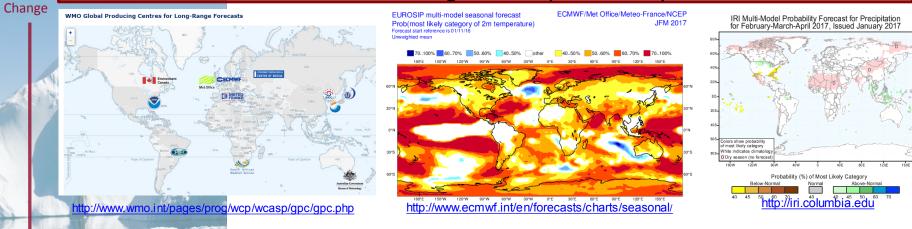
Forcings:
components of the
climate system that
evolve slowly and
could influence
atmospheric
conditions

Main forcings on Atlantic and Europe at seasonal scale

The predicability in Europe:

- Is still modest (little added value vs climatology), mainly available on large scale output and after time-integration/statistics
- Can be very different from one place to another, from one year to another (depending on the strengh of the forcings and on the type of climate)

The European climate is partly influenced by these forcings, but mainly chaotic.



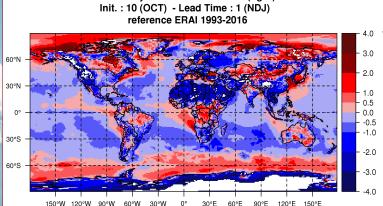
The current lanscape of operational Seasonal Forecast

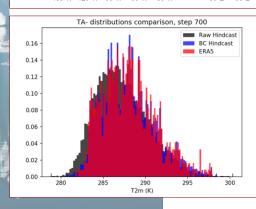
A robust and well-organised operational production

... supported by active research projects

Seasonal dataset

	Variable	Timescale	Source	Highest Temporal Resolution	Highest Spatial Resolution	Spatial Aggregation				
	Climate Indicators									
	Temperature «TA-»	Seasonal	EC, MF,	1 day	1 deg	Country				
	Precipitation «TP-»	Seasonal	EC, MF, MO	1 day	1 deg	Country				
	Wind (10 and 100m) «WS-»	Seasonal	EC, MF,	6 hours	1 deg	Country				
	Solar Radiation at surface «GHI»	Seasonal	EC, MF, MO	1 day	1 deg	Country				
/Albert	Energy Indicators									
and of	Electricity Demand « EDM »	Seasonal	EC, MF, MO	1 day	1	Country				
	Wind Power «WON» and «WOF»	Seasonal	EC, MF, MO	6 hours	1 deg	Country				
i	Solar Power «SPV»	Seasonal	EC, MF, MO	1 day	1 deg	Country				
TO THE	Hydro Power «HRE»	Seasonal	EC, MF, MO	1 day	1	Country				




Seasonal forecast bias adjustment

ECMWF system 5 - T2M - Bias (dg C)

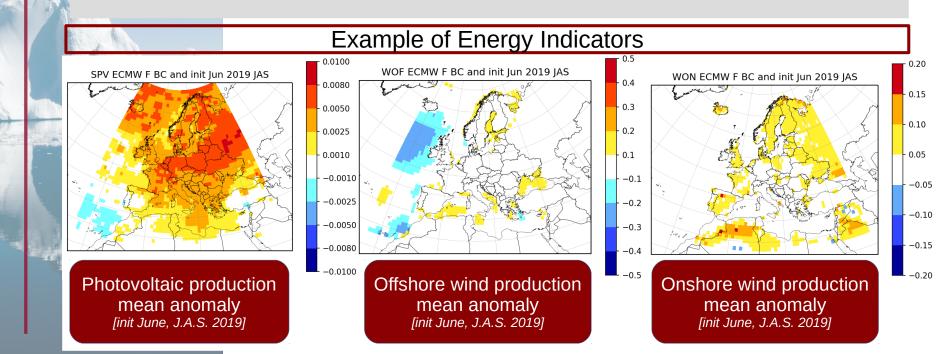
Why bias adjustment of Seasonal Forecast?

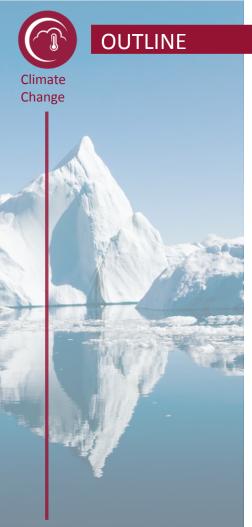
- All global model exhibit significant mean errors compared with observations
- It is common to found bias values exceeding
 - X Several degrees for temperature
 - More than 100mm/year for precipitation

Method used for bias adjustment:

- Quantile matching (e.g. Déqué et al., 2007)
- Reference: ERA5 on 1993-2016 period
- Special treatment for extreme values
- Moving +/-15days windows
- Bias adjustment of climate indicators (only)

Seasonal dataset

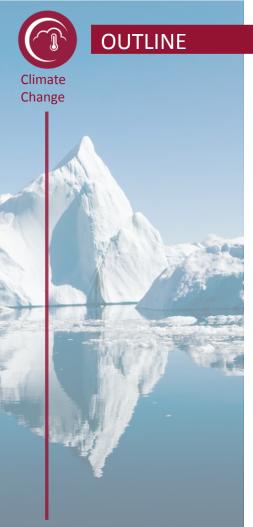

From the ensemble of forecast (ECMWF, Météo-France or UKMO) what is actually provided on the CDS?


Probabilistic values for each indicator:

- Mean anomaly
- Low/middle/high terciles probabilities

Assessment:

- Anomaly coefficient correlations
- ROC score



Focus on seasonal forecast dataset

3 Historical and Climate projection dataset

Conclusions and perspectives

Focus on seasonal forecast dataset

Historical and Climate projection dataset

Conclusions and perspectives

- C3S-SIS-Energy provide an operational service of production of climate and energy indicator. Meteorology reference taken: ERA5.
- Energy indicators addressing the demand and supply balance:

Electricity demand

Daily, NUTS0

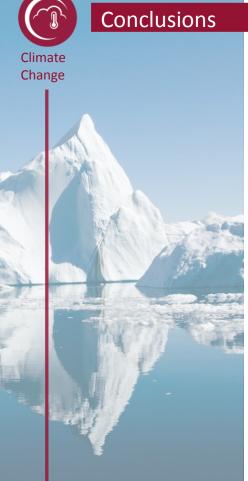
Wind power production 6h, 1° & NUTS0

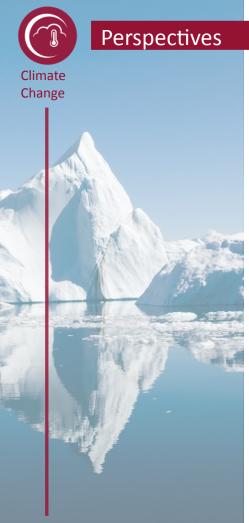
photovoltaic production 6h, 1° & NUTS0

Hydro production Daily, NUTS0

3 time periods:

SF:





C3S-SIS-Energy contract ends in April 2020 so what could be done next?

- a) Keep operational all the real-time running code
- b) Extend to other model as the Italian and german ones for seasonal.
- c) Extend to larger domain over the whole globe
- d) Address other needs for the demand and supply balance as gaz consumption, maximum ampacity, other solar productions.
- e) Test other statistical models to make the bias adjustment
- f) Other use cases to get better information on user's needs
- g) Others...?

END

C3S SIS Energy

Overlook on the C3S SIS Energy service with a focus on seasonal forecast

Raphaël Legrand, Météo-France

